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PENETRATION OF A RIGID CONE INTO A PLASTIC ORTHOTROPIC HALF SPACE 

A. G. Akopyan UDC 539.374 

A study is made of the rigid-plastic flow of a plastic orthotropic material as a rigid 
rough cone penetrates a half space at a constant speed. The material of the half space 
is assumed to be incompressible, ideally rigid-plastic, and subject to the Mises-Hill rela- 
tions [i] for a plastic orthotropic body. We assume that the principal axes of anisotropy 
coincide with the axes of a spherical coordinate system whose center is the vertex of the 
cone. An analogous problem for an isotropic material was studied in [2]; penetration of 
a rigid wedge into an anisotropic half space was considered in [3]; and the imbedding of 
a rigid stamp into an anisotropic plastic medium was investfgated in [4]. A study of the 
penetration of a thin solid body into a transversally isotropic medium was given in [5]. 
In [6] a study was made of the penetration of a rigid cylindrical body into a plastic aniso- 
tropic pipe. 

In the present paper we determine the pressure force during penetration of a rigid 
cone into a plastic orthotropic half space; we find the zone of distribution of plastic 
deformations and the form of the free surface of the displaced portion of half space 
material. A numerical example is presented showing the essential effect of anisotropy on 
the plastic zone distribution. 

i. Assume that a rigid cone penetrates into a half space. We assume that the plastic 
region that is formed around the rigid cone of angle @ = a is bounded by a conical surface 
with angle 8 = 6; the location of this surface is to be determined in the course of solving 
our problem (Fig. i). We assume that the region of plastic flow is bounded by a surface 
r = R(e), free from external loads, whose shape is also to be determined. In this region 
properties of the material are assumed to be plastic orthotropic, being a consequence of 
plastic deformation of the material (deformation anisotropy). On the contacting conical 
surface there arises a tangential stress whose value depends mainly on the roughness of 
this surface. 

Since there is no rotation of the rigid cone about its axis or the lateral area of 
the cone is ideally smooth in the peripheral direction, the annular component of the rate 
of displacement is equal to zero, whence 7r~ = ?09 = 0, T~ = Tog = 0. 

The differential equations of equilibrium in the spherical coordinate system then has 
the following form for our problem: 

O(~rar F rt aT~Oao F ~r (2(~r - -  % - -  (~m -~ "fro c t g  O) = O, 

a'~ rO I a% Dr +-- ' r - -~ + r i -- [(%-c~m) ctgO'l- 3TrO] : 0 .  
(1.1) 

Relations between the components of the deformation rate tensor, displacement rates, 
and stresses are: 

8~ = a--; = e [17o (% - %)  + Go ( % -  %)I' 
~ i av 

% = -7-  + ~ ao - ~ [Fo (% - -  % )  + - ~ o  (% - -  ~ 
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where 

U 
e~ = -7- + -'7- ctg 0 = ~q [G o (a~ - -  Or) + F o (o~ --  %)1' 

Ov 1 Ou v 
2V~0 = ~ ~- -7- ~ - -  7 = flNo%0" ( 1 . 2  ) 

The M i s e s - H i l l  y i e l d  c o n d i t i o n  [1 ]  may be  w r i t t e n  a s  

eo (~o - %)~ + ao (% - ~)~ + Ho (~  -- ~o) ~ + Wo~O = ~" ( 1 . 3 )  

Starting from relations (1.2), (1.3), we write the stress components in the form 

O r = % 3c (Fe r -- Geo)/~2 , ar = a 0 --  [H~ r + (G -{- If)Sol~Q, 

T tO= 2W?ro/Q' ( 1 . 4 )  

= [(F + H) e~ + 2Hers 0 + (G + H) s~ + 4N?~o11/~, 

F =  ~ / A ,  G =  Go/A, H = Ho/h, N =  i/No, h = FoGo~ GoHo ~ HoFo �9 

On the contact surface between the cone and the medium we specify the conditions 

x r 0 =  m, v =  ~ s i n ~  ( 0 = ~ ) .  ( 1 . 5 )  

Here V 0 is the given rate of penetration of the cone; m is a positive constant whose value 
is assumed to be given and depends on the nature and degree of roughness of the conical 
surface in the radial direction. 

On the boundary surface O = $ of the plastic zone we assume that the normal rate of 
displacement is continuous and that the tangential rate is discontinuous. We then put [7] 

v = 0 ,  v~0  ~ - ~  (0 = ~) .  ( 1 . 6 )  

N e x t ,  we h a v e  a c o n s e r v a t i o n  o f  m a s s  c o n d i t i o n :  t h e  v o l u m e  o f  t h e  p o r t i o n  o f  t h e  c o n e  
t h a t  h a s  p e n e t r a t e d  m u s t  e q u a l  t h e  v o l u m e  o f  m a t e r i a l  d i s p l a c e d .  

2 .  I n  t h e  p l a s t i c  r e g i o n  t h e  s t r e s s  c o m p o n e n t s  a n d  d i s p l a c e m e n t  r a t e s  may be  e x p r e s s e d  
i n  t e r m s  o f  t h e  unknown f u n c t i o n  f ( 0 ) :  

G V N - x  2, % = % + r  N --  ~ 0 =  
% - - %  + V ~ ( G + H )  ( 2 . 1 )  

u = - -  /' sin 0 --  2/ cos 0, v =  2/s in0,  w =  0. 

From Eqs. (i.i) we than have the expression 

0 0 

r J V G~-H ~ V N - - T  uctgOdO a o = - - p l - +  Alnit---~--3 TdO--}- V N .) 
o~ o~ 

( 2 . 2 )  

and the following equation for determining the function ~(@): 

H --  G V N  --~2 
�9 ' =  - -  A - -  x c t g 0  + ] / N - ~  + H) ( 2 . 3 )  

[A a n d  P l  a r e  a r b i t r a r y  c o n s t a n t s ,  R 1 = R ( a ) ] .  

F o r  t h e  s o l u t i o n  o f  Eq.  ( 2 . 3 )  we h a v e  t h e  b o u n d a r y  c o n d i t i o n  

�9 (a) = m, T(~) = --]/N. (2.4) 

The second condition in relations (2.4) is obtained by considering the bounding conical 
surface O = ~ between the plastic and rigid zones as a surface of slippage. 

We obtain function f(O) from the differential equation 

1 " +  3 c t g 0 - -  N V ~ .  = 0  ( 2 . 5 )  

with boundary conditions 
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f(=) = vd2, f(~) = o, 

as the solution of which we shall have 

(2.6) 

o 
. .  Vo I (o), ~ dO 

f (0) = 7 ~ I (0) = j '  exp ~ V ~ /  sin3-----0" 
O 

( 2 . 7 )  

Expressions for the displacement rates are then 

a1 ~i. ~0 V ~ - - - - - - ~ ]  o I (~) 

v = Vo sin Ol(O)/I(~z), w = O. 
( 2 . 8 )  

3. Consider now the equilibrium of the cone-shaped tube occupying the plastic region 
r ~ ~ ~ R(e), ~ ~ e 5 fi (Fig. 2). Equating to zero the sum of the projections of all forces 
acting on the surfaces of the conceptually localized body in the direction of the e = 0 
axis, we obtain 

R i R~ 

J [~o (r, ~) sin ~ - ~ cos ~] si. ~r~r -- j" toe (r, ~)~i. ~ + 
r r 

+ "W~'eos 8] sin ~rdr  - -  ~ [o r (r, O) cos 0 - -  %0 (0) sin O] r s sin OdO = 0. ( 3 . 1  ) 

Here R 2 = R($). Substituting into Eq. (3.1) expressions for the stress components and car- 
rying out the integration, we find 

m sin 2cc -{- - [ /Nv 2 sin 213 v 2 sin 2 [3 (D -[- A In v) A 
P t  ~-- 2 ( v  ~ s i n  2 [3 - -  s i n  ~ c~) + v2 s i n  2 [~ _ sin2c~ " - -  T '  
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~ - ~ [ ,  D = - 3  ~d0+ r T J V W - - - - - Z T o t g O d O "  

B e s i d e s  t h e  f u n c t i o n s  f ( 0 ) ,  T ( 0 ) ,  and t h e  p a r a m e t e r  A, i t  r em a in s  t o  a l s o  d e t e r m i n e  
f u n c t i o n  R(O) and p a r a m e t e r  B. From t h e  c o n d i t i o n  f o r  e q u i l i b r i u m  o f  an e l e m e n t  c l o s e  t o  
t h e  f r e e  s u r f a c e  r = R(0)  in  t h e  m e r i d i a n  p l a n e  on an a r e a  w i t h  normal  n ( F i g .  3) we have  
[8] 

an = ar(R, 0) cos20, + a0(R,0)sin20, + ~o(0) s~ 20,, 

~ =  [ a 0 ( R ' 0 ) -  ar(B'0)]sin0*c~ + ~re (0) c~ ( 3 . 2 )  

where 0 ,  = O n - ~, and e n is the angle between the normal n and the positive z-direction. 
Let the parametric equation of the curve of intersection of the free surface with the meri- 
dian plane be given in the form 0 = 0(8), z = z(0). Then 

s i n 0 n = -  z ' /  V p ' 2 + z  '2, COS0n:P' / V P ' 2 +  z'z" ( 3 . 3 )  

I n t r o d u c i n g  t h e  f u n c t i o n  

R(0) = h exp [Z(0)l/cos~ ( 3 . 4 )  

(h = V0t = R 2 cos B, h is a given depth, t is the time of penetration) and going over to 
a polar coordinate system, p = RsinO, z = Rcos@, from relations (3.3) we obtain 

tg0 n = (tgO -- %')I(1 + %' tg0). ( 3 . 5 )  

As was done in [2], we form the expression T = On 2 + Tns 2 and determine R from con- 
ditions for a minimum of T with respect to @n- Upon differentiating and using relations 
(3.2), we find 

aT/aO n = 2(~ r ~ ao)~s. 

In the problem considered, we find, upon putting o r 
(3.6) to zero, that ~ns = 0. 

Then 

0 a = 0 Jr (t/2) arcCg [2~rO/(a r -- ~0)]. 

( 3 . 6 )  

+ o 0 < 0 and equating expression 

From these values of O n it follows from expression (3.6) that 

e~rleO ~ = - (at + %) V'(a, - %)~ + 4~o > o. 

Consequently, function T attains a minimum value for O n so defined. 
R(0), ~ns = 0, and the normal stress 

a n (0) = a o (R, O) + (I/2) [a r --  a o + "V' (a r - ao)2 + 4~o].  

Substituting relation (3.7) into Eq. (3.5), we determine • and, then, 
account the expressions (2.1) for the stress components, we obtain 

zd0 
%(0)=2 V G2 [4 G~ ] " G 

(3.7) 

On the surface r = 

( 3 . 8 )  

taking into 

From function (3.4) we obtain the form of the displaced portion of the surface, namely 

B (0) = 
( 3 . 9 )  

Correspondingly, we have 
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v=exp --2~ ~ G u -~ 
G 

, 

) 
(3.io) 

The conservation of mass requirement yields 

R i COS (% 

h 

Going over to polar coordinates, we obtain 

I sin ~ (z cos a. exp (3)0 sin 3 O (l -- %' ctgO) dO--- 

Eliminating • with the aid of an integration by parts, we arrive at the equation 

-~-  sin ]3 cos ]3 = exp 6 . . . . . . .  sin 0 d0, 
G2 G2 x 2 Q ~ N  -- ~2 1 (3.1i) 

which, together with relations (2.3) and (2.4), determines the function ~ and parameters 
and A. 

The pressure force of the cone on the medium is 

R i 

P . =  - -  2~ sin 0~ ~ [(~8 (r, o~) sin o~ - -  m cos ~] rdr. 
D 

We refer to the conditional stress, impressed on the base of the penetrated portion 
of the cone, i.e., p = P/(~RI 2sin 2a), as the specific pressure. After evaluating the 
integral, we have 

m s i n 2 ~ ' V N ~ s i n 2 ~  , v ~ s i n ~ ( D ~ A l n v )  
P---- 2 ( ~ s i n ~ - - s i ~ a )  t '  ~s in"  ~ p - - s m "  ~ ~ m c t g ~ .  

According to the solution obtained, the surface r = R(0) is "loaded" with the normally 
distributed forces On(0). It follows from relations (3.8) and (3.9) that 

o o 

G--T-~+ 4-- N(a+H) +'I/~(-N-~) 
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t' V' v - o o. 4-p, N j 
O5 

We assume that the effect of these loads on the stressed state of the plastic region 
far from the free surface is nonexistent. The relationship between the pressure force and 
the penetration depth is given by 

p - ~__fP sin2~ h~. 
- -  ~2 00S2 

The problem (2.3), (2.4), (3.11) was solved numerically using the following simple 
algorithm. For the values selected for parameter $ we solved the two-point boundary value 
problem (2.3), (2.4). Next, the condition (3.11) was verified. Condition (3.11) was satis- 
fied by varying 6. Finally, the quantities T, 9, and A were determined. Figure 4 shows, 
based on the numerical calculations, graphs of ~(~) and p(~) for isotropic (dashed curves) 
and anisotropic (solid curves) materials for anisotropy parameters G/N = 6, H/N = 2.5 for 
for m = 0.5. In the case of an isotropic material G/N = HJN = 2. The graphs display the 
essential influence of anisotropy on the distribution of the plastic zone and the specific 
pressure of the cone on the medium. 

A numerical study was also made of bounds for the variation of ~. As ~ + ~/2, $ 
~/2, which is inadmissible in accordance with the statement of the problem since R 2 + =. 
This also depends on the anisotropy parameters and the value of m. With ~ < 80 ~ and for 
all possible values of anisotropy parameters considered in our numerical studies, no such 
phenomenon was observed, i.e., the solution obtained for these ~ is completely admissible. 

The author wishes to thank M. A. Zadoyan for his interest in the present paper. 
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